프로그래밍/C#

C# 언어로 평방근, 입방근, n제곱근 구하는 함수를 구현하고 테스트하기

Scripter 2013. 1. 11. 17:45

음이 아닌 실수 A 의 평방근 sqrt(A) 를 구하는 Heron 의 방법:

        반복함수  g(x) = (x + A/x) / 2   를 이용

 

실수 A 의 n제곱근 root(n, A) 를 구하는 Newton-Raphson 의 방법

        반복함수  g(x) = ((n-1)*x + A/(x**(n - 1))) / n    를 이용

n = 2 인 경우에는 Newton-Raphson 의 방법이 Heron 의 방법과 동일하다.

(참조. http://en.wikipedia.org/wiki/Newton's_method )

 

C# 언어에는 System 모듈에 지수 계산 함수 Math.Pow(double, double) 가 이미 구현되어 있다. 하지만 차후 필요한 데가 있을 것 같아서 이와 유사한 n 제곱 함수와 n 제곱근 함수를 구현해 보았다.

지수가 정수인 거듭제곱을 계산하는  함수도 nPow(), gPow, mPow() 세 개 구현해 놓았는데, 이들 세 함수는 절차적 언어의 성능상 재귀호출이 아니고 단순 반복 기법을 사용하는 함수이다. 이 세 함수 중 mPow() 의 성능이 가장 우수하다. 큰 지수의 경우 for 반복문의 반복회수를 따져 보면 성능 비교를 할 수 있을 것이다. (성능 비교를 위해 세 가지를 모두 소스에 남겨 두었다.) mPow() 함수는 n 제곱근을 구하는 재귀함수 newtonNthRoot(int, double) 의 구현에 사용되기도 한다. if ... else ... 구문이 많아 소스가 복잡하게 보일지 모르겠으나 이는 밑수나 지수가 음수이거나 0인 경우의 처리를 위함이다. 구현된 모든 함수의 구현에는 예외상황(예를 들어, 음수의 짝수 제곱근 같은 예외상황) 처리 과정이 있다.

아래의 소스는 대부분 버전의 비쥬얼 스튜디오의 C# 컴파일러로 컴파일 되고 실행되게 작성된 소스이다.

소스 첫 부분에

        private const int MAX_ITER = 20000;
        private const double M_EPSILON = 1.0e-15;

라고 선언하였으니 변수 MAX_ITER 와 M_EPSILON 는 (타입을 갖는) 상수로 선언되었다. const 예약어가 붙으면 static 예약어는 동시에 붙일 수 없다. Java 언어로는 상수를 선언할 방법이 없지만 C# 언어로는 이와 같이 const 예약어(키워드)를 이용하여 상수를 선언할 수 있다.

// Filename: TestNthRootApp.cs
//
//            Approximate square roots, cubic roots and n-th roots of a given number.
//
// Compile: csc TestNthRootApp.cs
// Execute: TestNthRootApp
//
// Date: 2013. 1. 6.
// Copyright (c) 2013 PH Kim  (pkim __AT__ scripts.pe.kr)


using System;

namespace TestApproximate
{

    public class TestNthRootApp {

        private const int MAX_ITER = 20000;
        private const double M_EPSILON = 1.0e-15;

        /**
         * Compute the n-th root of x to a given scale, x > 0.
         */
        public static double nPow(double a, int n) {
            if (n > 0) {
                if (n == 1)
                    return a;
                else {
                    if (a == 0.0 || a == 1.0) {
                        return a;
                    }
                    else if (a == -1.0) {
                        if (n % 2 == 1)
                            return -1.0;
                        else
                            return 1.0;
                    }
                    else if (a < 0.0) {
                        if (n % 2 == 1)
                            return -nPow(-a, n);
                        else
                            return nPow(-a, n);
                    }
                    else {
                        double y = 1.0;
                        for (int i = 0; i < n; i++) {
                            y *= a;
                        }
                        return y;
                    }
                }
            }
            else if (n == 0) {
                return 1.0;
            }
            else {      //  when n < 0
                if (a == 0.0)
                    throw new Exception("Negative powering exception of zero.");
                else {
                     if (n == -1)
                         return 1.0/a;
                     else
                         return 1.0/nPow(a, -n);
                 }
             }
        }

 

        /**
         * Compute the n-th root of x to a given scale, x > 0.
         */
        public static double gPow(double a, int n) {
            if (n > 0) {
                if (n == 1)
                    return a;
                else {
                    if (a == 0.0 || a == 1.0) {
                        return a;
                    }
                    else if (a == -1.0) {
                        if (n % 2 == 1)
                            return -1.0;
                        else
                            return 1.0;
                    }
                    else if (a < 0.0) {
                        if (n % 2 == 1)
                            return -gPow(-a, n);
                        else
                            return gPow(-a, n);
                    }
                    else {

                        double y = 1.0;
                        double r = a;
                        int m = 8*4 - 1;            ///  8*sizeof(int) - 1;
                        int one = 1;
                        for (int i = 0; i < m; i++) {
                            if ((n & one) == 0) {
                                y *= 1.0;
                            }
                            else {
                                y *= r;
                            }
                            r = r*r;
                            one <<= 1;
                            if (one > n)
                                break;
                        }
                        return y;
                    }
                }
            }
            else if (n == 0) {
                return 1.0;
            }
            else {      //  when n < 0
                if (a == 0.0)
                    throw new Exception("Negative powering exception of zero.");
                else {
                    if (n == -1)
                        return 1.0/a;
                    else
                        return 1.0/gPow(a, -n);
                }
            }
        }


        /**
         * Compute the n-th root of x to a given scale, x > 0.
         */
        public static double mPow(double a, int n) {
            if (n > 0) {
                if (n == 1)
                    return a;
                else {
                    if (a == 0.0 || a == 1.0) {
                        return a;
                    }
                    else if (a == -1.0) {
                        if (n % 2 == 1)
                            return -1.0;
                        else
                            return 1.0;
                    }
                    else if (a < 0.0) {
                        if (n % 2 == 1)
                            return -mPow(-a, n);
                        else
                            return mPow(-a, n);
                    }
                    else {

                        double y = 1.0;
                        double r = a;
                        int m = n;
                        while (m > 0) {
                            if ((m & 0x1) == 1) {
                                y *= r;
                            }
                            r = r*r;
                            m >>= 1;
                        }
                        return y;
                    }
                }
            }
            else if (n == 0) {
                return 1.0;
            }
            else {      //  when n < 0
                if (a == 0.0)
                    throw new Exception("Negative powering exception of zero.");
                else {
                    if (n == -1)
                        return 1.0/a;
                    else
                        return 1.0/mPow(a, -n);
                }
            }
        }

 

        /**
         * Compute the square root of x to a given scale, x > 0.
         */
        public static double heronSqrt(double a) {
            if (a < 0.0) {
                throw new Exception("Cannot find the sqrt of a negative number.");
            }
            else if (a == 0.0 || a == 1.0) {
                return a;
            }
            else {
                double x1 = a;
                double x2 = (x1 + a/x1)/2.0;
                double er = x1 - x2;
                int counter = 0;
                while (x1 + er != x1) {
                    x1 = x2;
                    x2 = (x1 + a/x1)/2.0;
                    er = x1 - x2;
                    if (Math.Abs(er) <Math.Abs( M_EPSILON*x1))
                        break;
                    counter++;
                    if (counter > MAX_ITER)
                        break;
                }
                if (counter >= MAX_ITER)
                    throw new Exception("Inaccurate sqrt exception by too many iterations.");
                return x2;
            }
        }

        /**
         * Compute the cubic root of x to a given scale, x > 0.
         */
        public static double newtonCbrt(double a) {
            if (a == 0.0 || a == 1.0 || a == -1.0) {
                return a;
            }
            else if (a < 0.0) {
                return -newtonCbrt(-a);
            }
            else {
                double x1 = a;
                double x2 = (2.0*x1 + a/(x1*x1))/3.0;
                double er = x1 - x2;
                int counter = 0;
                while (x1 + er != x1) {
                    x1 = x2;
                    x2 = (2.0*x1 + a/(x1*x1))/3.0;
                    er = x1 - x2;
                    if (Math.Abs(er) <Math.Abs( M_EPSILON*x1))
                        break;
                    counter++;
                    if (counter > MAX_ITER)
                        break;
                }
                if (counter >= MAX_ITER)
                    throw new Exception("Inaccurate cbrt exception by too many iterations.");
                return x2;
            }
        }

        /**
         * Compute the n-th root of x to a given scale, x > 0.
         */
        public static double newtonNthRoot(int n, double a) {
            if (n == 0) {
                return 1.0;
            }
            else if (n == 1) {
                return a;
            }
            else if (n > 0) {
                if (a == 0.0 || a == 1.0) {
                    return a;
                }
                else if (a == -1.0) {
                    if (n % 2 == 1)
                        return a;
                    else
                        throw new Exception("Cannot find the even n-th root of a negative number.");
                }
                else if (a < 0.0) {
                    if (n % 2 == 1)
                        return -newtonNthRoot(n, -a);
                    else
                        throw new Exception("Cannot find the even n-th root of a negative number.");
                }
                else if (a < 1.0) {
                    return 1.0/newtonNthRoot(n, 1.0/a);
                }
                else {
                    double x1 = a;
                    double xn = mPow(x1, n - 1);
                    double x2 = ((n - 1)*x1 + a/xn)/n;
                    double er = x1 - x2;
                    int counter = 0;
                    while (x1 + er != x1) {
                        x1 = x2;
                        xn = mPow(x1, n - 1);
                        x2 = ((n - 1)*x1 + a/xn)/n;
                        er = x1 - x2;
                        if (Math.Abs(er) <Math.Abs( M_EPSILON*x1))
                            break;
                        counter++;
                        if (counter > MAX_ITER)
                            break;
                    }
                    if (counter >= MAX_ITER)
                        throw new Exception("Inaccurate n-th root exception by too many iterations.");
                    return x2;
                }
            }
            else {
                if (a == 0.0) {
                    throw new Exception("Cannot find the negative n-th root of zero.");
                }
                else {
                    return 1.0/newtonNthRoot(-n, a);
                }
            }
        }


        public static void Main(string[] args) {

            double x = 16.0;
            double u = Math.Sqrt(x);

            Console.WriteLine("[ Testing heronSqrt(double) ]--------------------");
            Console.WriteLine("x = " + x );
            Console.WriteLine("u = Sqrt(" + x + ") = " + u );
            double y = heronSqrt(x);
            Console.WriteLine("y = heronSqrt(" + x + ") = " + y );
            Console.WriteLine("y*y = " + y*y );
            Console.WriteLine();

            Console.WriteLine("[ Testing newtonCbrt(double) ]--------------------" );
            x = -216.0;
            Console.WriteLine("x = " + x );
            Console.WriteLine("-Exp(Log(-x)/3.0) = " + -Math.Exp(Math.Log(-x)/3.0) );
            double w = newtonCbrt(x);
            Console.WriteLine("w = newtonCbrt(" + x + ") = " + w );
            Console.WriteLine("w*w*w = " + w*w*w );
            Console.WriteLine();

            x = 729000000000.0;
            Console.WriteLine("x = " + x );
            Console.WriteLine("Exp(Log(x)/3.0) = " + Math.Exp(Math.Log(x)/3.0) );
            w = newtonCbrt(x);
            Console.WriteLine("w = newtonCbrt(" + x + ") = " + w );
            Console.WriteLine("w*w*w = " + w*w*w );
            Console.WriteLine();

            Console.WriteLine("[ Testing newtonNthRoot(int, double) ]--------------------" );
            double z = newtonNthRoot(3, x);
            Console.WriteLine("x = " + x );
            Console.WriteLine("z = newtonNthRoot(3, " + x + ") = " + z );
            Console.WriteLine("z*z*z = " + z*z*z );
            Console.WriteLine();

            x = 12960000000000000000.0;
            z = newtonNthRoot(4, x);
            Console.WriteLine("x = " + x );
            Console.WriteLine("z = newtonNthRoot(4, x) = newtonNthRoot(4, " + x + ") = " + z );
            Console.WriteLine("z*z*z*z = " + z*z*z*z );
            Console.WriteLine();

            x = 1.0/12960000000000000000.0;
            z = newtonNthRoot(4, x);
            Console.WriteLine("x = " + x );
            Console.WriteLine("Exp(Log(x)/4.0) = " + Math.Exp(Math.Log(x)/4.0) );
            Console.WriteLine("z = newtonNthRoot(4, x) = newtonNthRoot(4, " + x + ") = " + z );
            Console.WriteLine("z*z*z*z = " + z*z*z*z );
            Console.WriteLine();


            try {
                x = -4.0;
                Console.WriteLine("[ Test Exception heronSqrt(double) ]--------------------" );
                Console.WriteLine("x = " + x );
                Console.WriteLine("Calculating heronSqrt(" + x + ")" );
                y = heronSqrt(x);
                Console.WriteLine("y = heronSqrt(" + x + ") = " + y );
                Console.WriteLine("y*y = " + y*y );
                Console.WriteLine();
            }
            catch (Exception ex) {
                Console.WriteLine(ex.Message + "\n" + "Caught some exception in calculating heronSqrt(" + x + ")");
                Console.WriteLine();
            }


            try {
                x = -4.0;
                Console.WriteLine("[ Test Exception in newtonCbrt(double) ]--------------------" );
                Console.WriteLine("x = " + x );
                Console.WriteLine("Calculating newtonCbrt(" + x + ")" );
                y = newtonCbrt(x);
                Console.WriteLine("y = newtonCbrt(" + x + ") = " + y );
                Console.WriteLine("y*y*y = " + y*y*y );
                Console.WriteLine();
            }
            catch (Exception ex) {
                Console.WriteLine(ex.Message + "\n" + "Caught some exception in calculating newtonCbrt(" + x + ")");
                Console.WriteLine();
            }


            Console.WriteLine("[ Test calculations by powering ]-----------------------------" );
            x = 200.0;
            z = newtonNthRoot(10, x);
            Console.WriteLine("x = " + x );
            Console.WriteLine("Exp(Log(x)/10.0) = " + Math.Exp(Math.Log(x)/10.0) );
            Console.WriteLine("z = newtonNthRoot(10, x) = newtonNthRoot(10, " + x + ") = " + z );
            Console.WriteLine("Pow(z, 10) = " + Math.Pow(z, 10) );
            Console.WriteLine();

            x = 3001.0;
            z = newtonNthRoot(99, x);
            Console.WriteLine("x = " + x );
            Console.WriteLine("Exp(Log(x)/99.0) = " + Math.Exp(Math.Log(x)/99.0) );
            Console.WriteLine("z = newtonNthRoot(99, x) = newtonNthRoot(99, " + x + ") = " + z );
            Console.WriteLine("Pow(z, 99) = " + Math.Pow(z, 99) );
            Console.WriteLine();

            x = 3001.0;
            z = newtonNthRoot(-99, x);
            Console.WriteLine("x = " + x );
            Console.WriteLine("Exp(Log(x)/-99.0) = " + Math.Exp(Math.Log(x)/-99.0) );
            Console.WriteLine("z = newtonNthRoot(-99, x) = newtonNthRoot(-99, " + x + ") = " + z );
            Console.WriteLine("1.0/Pow(z, 99) = " + 1.0/Math.Pow(z, 99) );
            Console.WriteLine();


            Console.WriteLine("2.1**2.1 = Pow(2.1, 2.1) = "  + Math.Pow(2.1, 2.1) );
            Console.WriteLine("2.1**(-2.1) = Pow(2.1, -2.1) = "  + Math.Pow(2.1, -2.1) );
            Console.WriteLine("2.1**2.1 * 2.1**(-2.1) = Pow(2.1, 2.1) * Pow(2.1, -2.1) = "  + Math.Pow(2.1, 2.1)*Math.Pow(2.1, -2.1) );
            Console.WriteLine("2.1**2.1 = Exp(2.1*Log(2.1)) = "  + Math.Exp(2.1*Math.Log(2.1)) );
            Console.WriteLine("2.1**(-2.1) = Exp(-2.1*Log(2.1)) = " + Math.Exp(-2.1*Math.Log(2.1)) );
            Console.WriteLine("2.1**2.1 * 2.1**(-2.1) = Exp(2.1*Log(2.1)) * Exp(-2.1*Log(2.1)) = "  + Math.Exp(2.1*Math.Log(2.1)) * Math.Exp(-2.1*Math.Log(2.1)) );
            Console.WriteLine();


            int k = 301;
            x = -1.029;
            double t1 = nPow(x, k);
            double t2 = gPow(x, k);
            double t3 = mPow(x, k);
            Console.WriteLine("t1 = nPow(" + x + ", " + k + ") = " + t1 );
            Console.WriteLine("t2 = gPow(" + x + ", " + k + ") = " + t2 );
            Console.WriteLine("t3 = mPow(" + x + ", " + k + ") = " + t3 );
            Console.WriteLine("t1 / t2 = " + (t1 / t2) );
            Console.WriteLine("t1 - t2 = " + (t1 - t2) );
            Console.WriteLine("t1 == t2 ? " + ((t1 == t2) ? "yes" : "no") );
            Console.WriteLine("t1 / t3 = " + (t1 / t3) );
            Console.WriteLine("t1 - t3 = " + (t1 - t3) );
            Console.WriteLine("t1 == t3 ? " + ((t1 == t3) ? "yes" : "no") );
            Console.WriteLine("t2 / t3 = " + (t2 / t3) );
            Console.WriteLine("t2 - t3 = " + (t2 - t3) );
            Console.WriteLine("t2 == t3 ? " + ((t2 == t3) ? "yes" : "no") );
            Console.WriteLine();

            Console.WriteLine("Done.");
        }
    }
}

/*
Output:
[ Testing heronSqrt(double) ]--------------------
x = 16
u = Sqrt(16) = 4
y = heronSqrt(16) = 4
y*y = 16

[ Testing newtonCbrt(double) ]--------------------
x = -216
-Exp(Log(-x)/3.0) = -6
w = newtonCbrt(-216) = -6
w*w*w = -216

x = 729000000000
Exp(Log(x)/3.0) = 9000
w = newtonCbrt(729000000000) = 9000
w*w*w = 729000000000

[ Testing newtonNthRoot(int, double) ]--------------------
x = 729000000000
z = newtonNthRoot(3, 729000000000) = 9000
z*z*z = 729000000000

x = 1.296E+19
z = newtonNthRoot(4, x) = newtonNthRoot(4, 1.296E+19) = 60000
z*z*z*z = 1.296E+19

x = 7.71604938271605E-20
Exp(Log(x)/4.0) = 1.66666666666667E-05
z = newtonNthRoot(4, x) = newtonNthRoot(4, 7.71604938271605E-20) = 1.66666666666
667E-05
z*z*z*z = 7.71604938271605E-20

[ Test Exception heronSqrt(double) ]--------------------
x = -4
Calculating heronSqrt(-4)
Cannot find the sqrt of a negative number.
Caught some exception in calculating heronSqrt(-4)

[ Test Exception in newtonCbrt(double) ]--------------------
x = -4
Calculating newtonCbrt(-4)
y = newtonCbrt(-4) = -1.5874010519682
y*y*y = -4

[ Test calculations by powering ]-----------------------------
x = 200
Exp(Log(x)/10.0) = 1.69864646463425
z = newtonNthRoot(10, x) = newtonNthRoot(10, 200) = 1.69864646463425
Pow(z, 10) = 200

x = 3001
Exp(Log(x)/99.0) = 1.08423618932588
z = newtonNthRoot(99, x) = newtonNthRoot(99, 3001) = 1.08423618932588
Pow(z, 99) = 3001

x = 3001
Exp(Log(x)/-99.0) = 0.922308266265993
z = newtonNthRoot(-99, x) = newtonNthRoot(-99, 3001) = 0.922308266265993
1.0/Pow(z, 99) = 3001.00000000001

2.1**2.1 = Pow(2.1, 2.1) = 4.74963809174224
2.1**(-2.1) = Pow(2.1, -2.1) = 0.210542357266885
2.1**2.1 * 2.1**(-2.1) = Pow(2.1, 2.1) * Pow(2.1, -2.1) = 1
2.1**2.1 = Exp(2.1*Log(2.1)) = 4.74963809174224
2.1**(-2.1) = Exp(-2.1*Log(2.1)) = 0.210542357266885
2.1**2.1 * 2.1**(-2.1) = Exp(2.1*Log(2.1)) * Exp(-2.1*Log(2.1)) = 1

t1 = nPow(-1.029, 301) = -5457.92801577163
t2 = gPow(-1.029, 301) = -5457.92801577169
t3 = mPow(-1.029, 301) = -5457.92801577169
t1 / t2 = 0.999999999999989
t1 - t2 = 6.18456397205591E-11
t1 == t2 ? no
t1 / t3 = 0.999999999999989
t1 - t3 = 6.18456397205591E-11
t1 == t3 ? no
t2 / t3 = 1
t2 - t3 = 0
t2 == t3 ? yes

Done.
*/